a2 United States Patent

US009262554B1

(10) Patent No.: US 9,262,554 B1

Bailey et al. 45) Date of Patent: Feb. 16, 2016
(54) MANAGEMENT OF LINKED LISTS WITHIN (56) References Cited
A DYNAMIC QUEUE SYSTEM
U.S. PATENT DOCUMENTS
(75) Inventors: Patrick Bailey, Port Coquitlam (CA); 5517462 A * 5/1996 Twamoto et al. 365/195
Heng Liao, Belcarra (CA) 5,809,557 A 9/1998 Shemla et al.
6,049,802 A 4/2000 Waggener, Jr. et al.
. . 6,219,728 Bl 4/2001 Yi
(73) Assignee: PMC-Sierra US, Inc., Sunnyvale, CA 6.430.666 Bl 82002 Rgih
(US) 6,640,267 Bl 10/2003 Raza
6,694,388 Bl 2/2004 Schzukin et al.
* 7,035,988 B1* 4/2006 Marinocccoeoenee. 711/170
(*) Notice: Subject. to any dlsclalmer,. the term of this 7111289 B2* 9/2006 Koob etal oo 17152
patent is extended or adjusted under 35 7.334.091 Bl 5/2008 Mizrahi
U.S.C. 154(b) by 269 days. 7,337,275 B2* 2/2008 Wolrichetal. 711/132
2005/0235129 Al 10/2005 Sokol
(21) Appl. No.: 13/027,777 2007/0294499 Al* 12/2007 Garthwaite 711/170
.No.: s
* cited by examiner
(22) Filed: Feb. 15, 2011 Primary Examiner — Hosain Alam
Assistant Examiner — Tuan-Khanh Phan
(74) Attorney, Agent, or Firm — Dennis R. Haszko
Ny Related US Application Data 57) ABSTRACT
(60) Provisional application No. 61/305,057, filed on Feb. A method and apparatus are disclosed for management of
16, 2010. linked lists within a dynamic queue system. In a dynamic
queue system where a central memory is shared amongst a set
(51) Int.CL of queues, the method organizes the linked list structures of
GO6F 17/30 (2006.01) the queues. The linked list pointers of the queues are orga-
GO6F 3/0482 (2013'01) nized over a set of single port memories. Memory for the
’ queue entries is allocated in an alternating fashion, which
(52) US.Cl allows the method to provide per-cycle access to queues while
CPC ... GOGF 17/30985 (2013.01); GOGF 17/30569 reducing the footprint of the memory elements used for main-
(2013.01); GO6F 3/0482 (2013.01) taining the linked list structures. The method disclosed
(58) Field of Classification Search reduces the overall memory requirements for the design and

CPC ..o GOGF 17/30958; GOGF 17/30569

USPC ittt 707/797-812
See application file for complete search history.

implementation of queue systems with multiple queues shar-
ing a common pool of memory.

24 Claims, 17 Drawing Sheets

(1 10
Linked List (ommgn =" Queue
Memory MemoryPool Read Next Read Write Sub-Pool
(2- single port RAM) (1- single port RAM) r200 Pointer Pointer Pointer Index
M4~ 112 g) 132 134 136 138y
; '*\ 2@6“\ .

AD Null Queve 1Entry 1] AD] AD MULL AD Queue 1 8

]
Al A2 ~._free A A f NULL NULL NULL | Queue2 A

S |)

R m feh | A2[T Freelist A 140~

+120 \ A1 | Stack Pointer A\
I§! Null FeeA | A3\ 202 128 204

116~ : Free List
A A5 Free B A Ad Stack Pointer B
130

A A FreeB A5

$122
Ab A7 Free B A
A7 Hull FreeB A?J

US 9,262,554 B1

Sheet 1 of 17

Feb. 16, 2016

U.S. Patent

4
C# ARING
10900 \vw

LYY HOld

4}
(# AN
N0

\\E\

143N 01 3L

ALY EHENT

ﬂ/éw\vw

13IUI04 LA

1X3N 01 4330104

e12(] ANANY

Lol

43
L# AdINA
NIN0

\\3\

AN 01 Ja1ui0g

ATIERENT

Lol

\\.E

J33UI04 peay

US 9,262,554 B1

Sheet 2 of 17

Feb. 16, 2016

Ly

oy

§¥

144

ey

4

LY

0¥

U.S. Patent

1Y HOlHd
< 5
Ay 99} RN
9y | LAnugzenand LY
¢y |1 Anug|enanp £y
by | Anug | enang iy
0% ,
190 RIS oy | 7 Anug|enand Y
1517 334 Oy
[l 99 A
7 3hang Ly Ly 9y Ly §ZAnugzenen] HIN
| 3NNy by £y &Y 0y =E1S I
74 cc 07 21 ol
1104 1310104 123104 1004 AIOWDY Aiowaw
UM DE3Y IXON peay HOUILLOY 1517 paut]

Sheet 3 of 17

Feb. 16, 2016

U.S. Patent

LUy HOlHd
€°Did
HIN @ﬁ £y #ﬁ A

Jal4 F3H J3H 0y
A HIN Ly LY

13104 A E } A1ug
JIIM Tl zenend 7 onand) o
by HIWN 141 &Y £y

131104 ¢ Anug éﬁ 7 Anug | Afug
I | nand | onan) | N3N Sy

ARG

8C

131U104 peay
MAN]

hmwzmﬁm @mmm

@NJ
JoltHO] DEaY
N H

US 9,262,554 B1

Sheet 4 of 17

Feb. 16, 2016

U.S. Patent

144
7 7 ananD

| anand

Sl
4

1HY HOlHd
A 331 I
9y 1 Anugzanany Ly
¢y |1 Anulgenand Y
AU3 1 enan
o¢ n by .wz wgjemeny| 0¥
J D £nu7 | ansnp
ETTIAD plaly VR IS KA LS by
1517 3944 7y 0%
é 9944 1y
—
Ly Ly 9y ly |7AnuzzenanD // 1N
vy £y ey oy Anug may 7y
¥ Fdd 0c 2% gl g1
1314104 ETHIY 1914104 1004 AJ0Wapy Alowsp
UM DEIY 18N pesy UOLIOY 8E 9t 1517 payui]

(Anugmay)

141

i34

44

LY

oy

US 9,262,554 B1

Sheet 5 0f 17

Feb. 16, 2016

U.S. Patent

L8V HOlHd
S "Oid
HEY é_v Ly
Jeii <ol = 7Y
Ly
10
AlUM
. oy I LY Ly
133104 7 Anug | Anug
LM, "1 7emanp 7 anang N
AN 0 u 7Y gy £y
h ¢ Al 7 Anug | Anul
1 Anuzmop paneny | | 1enenp { Bnanp) 5Y

1330104
PeS

£ T
g
[4°]

¥ D
T

g W

wmyf

191U104 peay
BEN

5

131104 pay

9¢

1930 peay
Y

13IUI04 peay

US 9,262,554 B1

Sheet 6 of 17

Feb. 16, 2016

U.S. Patent

LYY HOd
9°Did
£y 301 NN
Aljug peay
| Ajug 7 anenp LY
Gy | L Auuganen] 7y
o
94 AJ3u3 | anan
@mJ Py | ¢ Auggenang oY
1220104 RIS ¢y | TAnugfenenp ry
1517 234 sy
Fa4
o 4 i 1y
87 zenenp LY LY /m,/ 9y Ly | ¢ Anugzenang 1IN
AN

STANEIE oV il 0¥ | ¥ Anugganan 7y

7z 7z ‘os oz 5T 91
1330104 04 1310104 {004 AOUB AIOLLIBW
M DERY 13N neay 7S Iy 1517 payuny

-)

A e

e

14

ey

oy

US 9,262,554 Bl

Sheet 7 of 17

Feb. 16, 2016

U.S. Patent

18V HOldd
L7514
{14 N /¥ cy
d9l 334 3 | ¢y
LY
104
UM ~!
7 Oy HIN Ly Ly
MMWEMG& N mhwzw M\ \meﬁ
UM "1 7enanp zamany 7 W
U oy | e oy
o) P ¢ Anug thnuy | :
| enenp) | ananf) Lanend | ¥

e~

JIUI04
$eg

8C

BI04 pesy
N

I3 peay

9

910104 ey
YN

193u104 peay |

US 9,262,554 B1

Sheet 8 of 17

Feb. 16, 2016

U.S. Patent

801

| NOLLDWSNYYL m

— 31YGdN 15113344V NYHL1004-90S INTEIHIGY

g0t | HOSHIO ROIDVSNYVSL 14040 511 G N0
(3WH04H3d SINOILYY3dO

INAND ¥ NIHM 15117344 T004-8NS HOVI NI SHADI0

\ NOLLOYSNYULAJOWIW INO 1SOW LY IYHL HOAS $1004-90S
201 (NODIS ONY 1S8H FHLHAAO SIRINT 3N3N0 YN

SAHOWIW 1404 J1ONIS J1VHYdIS NO GRIOIS
SISTT 3344 ONO3S ANV 1S8H JHLABAIDALSH
71 “SISIT 3344 GNODAS ONY 1SHI4 ONISA S100d-9N1S GNOJIS
YOL-" | ANV 1SYH THL NI SNOLYIOT AYOWIW G D0TIYNA DVYL

0L—
- 371S Y03 40 §1004-8NS
(NOXS ANV 1SHH OLNTAYOWAW 40
1004 NOWWOD GIZNVILINING NY 3G1AId

US 9,262,554 B1

Sheet 9 of 17

Feb. 16, 2016

U.S. Patent

6 '9id
£y
1
| ov
(C XM
5eT \ gy
g 133Ui0d els vy
1517 9944 4
8L £y
PREIUHUE Bld AN v 74 X
- oL 11994 w A
]
¥ Zenenl i TINN TI0N TION Ly
¥ Lsmen 1 TINN TINN TINN H/@m
me [o¢l iz €T
Xapu| BP0d Bued Jajog
1004-GnS UM peayIEN peay
anany
Ol \m

g 994 N A

g @ald A 9y

d oald 9y ¢y

g 9dd4 oy WY
‘gL

Y 9old N ¢y

Y 39l 134 A

Y 9344 7y LY

Y 3al4 Ly 0v
8il r4 N} Ll

(W vod aibuis -) {Wyy vod aibuis - 7)
1004 AIOWBN Alowap
YOI 15T Py

U.S. Patent Feb. 16, 2016 Sheet 10 of 17 US 9,262,554 B1

&
w
O
b

Free A
Null
Free B
Null

[
|

Free A
A
re
A

[
hE

ree B
A6

Free A
AZ

[
RE

Free A
Al
Free B
A5

.
-

< <
=T =
] o0
Snooe
% 5 % o
- = < 8= O
V8 I ™S VR ™
L o TN Lo

[T
C yisiTea) (q 1517 994 T

US 9,262,554 B1

Sheet 11 of 17

Feb. 16, 2016

U.S. Patent

LL 5
_?q g sl L A
/ gy g 3944 £y 9Y
cTis
e | SY g 9sH 9y &Y
Oel \
§ J31u104 RS 141 Py dosH &Y by
15172944 V Q1L
8¢l 707 ey VECE i v
voc Y J91ul04 HIRIS LY 07 M‘M_
\ OFlL INEEC i Y 93 oy 7y
volz %ﬁm TINN TINN TINN LY y 931 7y LY
g9 iemenp} OV TINN o 0v 1t Anugyensng JiBY oy
. \
907 t—— — — \ — SN
g5l 9tl VET 43 811 41 bl
X[10 3O muod 007y (wyyuod sibuis - 1) (Wys vied ajbuis - 7)
1004-4ng 31 peay 1XsN peay 1004 AOWBs Aiouap
NG VA R — | Howio) 1817 payu]
Ol w\

US 9,262,554 B1

Sheet 12 of 17

Feb. 16, 2016

U.S. Patent

ZL "Dl
HEY AN
ACHUIE { Aug

S 0¥] L anand 0¥

il ﬁ A _1 9y ﬁ &Y
G331 e g3t | R R ERIN Y

Hil L! £y A‘ﬁ v

Y 9944 Y 90 Yaald e Ly

vl

ETIIVY
DPY 1X3N

1330104
peay

9l

g 1204
NeIS

144"

Y 121U10
P

Y (o

)~

‘gaajg) C | anany

(vyl

US 9,262,554 B1

Sheet 13 0of 17

Feb. 16, 2016

U.S. Patent

£LOld
A EEE HI A
9y g 9o iy 9y
Wi~ A3 may 44
Gy EC 9y 44
FET 0Lz
g 130104 3RS oy Py 1 7 AnuT 1 enang ¢y By
\\\ 1517 934 M_Amwm /@S
P17 gzl ey ¥ 994 HI &y
W 330104 el LY Q pm/
\\ ori IR 001 < ¥~ Y 2dl &y A
\ <
vz %g@ TINN TN TION |/ LY VOl Ty LY
v |Lenangy by by oy 0Y | LAnu3 L enang by oy
\gg1 9¢l VEL el 81l 4y vl
Xopu] 310 1234104 R (s pod ogbus - 1) (wyy vod apbuss - 7)
[004-Gn¢ alUM pesy 1XaN pesy [0od Arowapy Alowaw
Mg IS} poojui]

HOLILLEY)
Ol W\\

US 9,262,554 B1

Sheet 14 of 17

Feb. 16, 2016

U.S. Patent

A IF
HAN 14 14
10d 7 Anul | Ay

3l 4 Lanang Lanan 0¥

BN Ly Oy
¢ 99i4 g 9aid g 924 ¢y

HAN Lw 137 oy
Y Jaid Y oald Y @3l 1Y

Nwm‘f
eI
peay Ry | &
Bey | ®
S

@Nw;/\sj
g 1314104 W
peys 1=

por)

A

)/}

Y 1910 W
PRI 1=
e

.

US 9,262,554 B1

Sheet 15 0of 17

Feb. 16, 2016

U.S. Patent

SL°Did
g
w £y g ooy NN A
9y 4 9ol A 9y
a4}
Y 4 vold oy &Y
g 191104 YorIS |
15179314 Y m, p¥ |z Auugpenenp | A Ty J,,E
> M 9Lt
8¢ Ly ¥ @8l N £y
1G4 e
vl T | 0~ QNLN M
32 _ .
\ v/\)@mm Kmq Y el w ey 0y
¥ Zamng L TINN ..:mz/_/ TINN WE Ty 204 M 7y LY
N i
It | anend vy THIN —= VY M oy Y Juli Ly 0v
A
opul \gg, D€l PEL TEL 0 8L AT
1004-GNS 191u104 jsjulod Jaluiog (WY 1iod ajbuis - 1)/ (Wyy 1od s1buis - 7)
IN3ING JIUM peay 1eN peay 1004 Aoy / AIOUIY
_W m I P w UuoLUILO) 1517 payur]
8y 1\ 17 peay Qi\x
Vel~> T

US 9,262,554 B1

Sheet 16 of 17

Feb. 16, 2016

U.S. Patent

pE3Y XN

9L 94
HEY HEY
18}Ui0d 7 A
SHM v Lanany vy
1IN A 9y

q 33l q 99l g 9314 Gy

PN ey &y LY
Y 334 Y 934 ESE ¥ 30H oy

]
.
,,/

FEIHInY

anp }

JRIHIN
peay
74

Y (=

T334

g 133104
§owIS

144!

Y(q1s1

¥ 121U104
PRI

(" visireal

US 9,262,554 B1

Sheet 17 of 17

Feb. 16, 2016

U.S. Patent

L1914

AIOWIBIN
dup ug
10553001
m pappaquiy | €91
suibug
YWQ
. w | lebeuew L1 sl
anang
9c | - ELINEI
] aNd HEILTN @M@mw 0L
. NueuAg
G@m‘ ..:l.ll...!li:......:\ ux\\\\n\mmmx ‘\\.\zamm.
pUNoOmING pUnoqY]
A 1Ay pasesbayug pyneds uonedddy
1504
-
G/

US 9,262,554 B1

1
MANAGEMENT OF LINKED LISTS WITHIN
A DYNAMIC QUEUE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of priority of U.S. Pro-
visional Patent Application No. 61/305,057 filed Feb. 16,
2010, which is incorporated herein by reference.

FIELD

The present disclosure relates generally to data queuing
systems. More particularly, the present disclosure relates to a
queuing system that uses linked lists to form queues and
manage memory.

BACKGROUND

Typical queuing systems contain multiple queues, which a
user can access by pushing data onto a queue or popping data
from a queue. The more complex queuing systems typically
have acommon pool of memory shared amongst all or a group
of queues. The common pool of memory is used for storing
queue entries as they are pushed onto individual queues. One
flexible approach is for the common pool of memory to be
managed dynamically.

Ina dynamic queue system, the common memory locations
that are available for use by queues are tracked and managed.
This tracking mechanism is sometimes referred to as the free
list or free queue. Dynamic queue systems usually support
two queue operations: push and pop. A push operation will
add an entry to a queue, while a pop operation will remove an
entry. A push operation will cause memory to be de-allocated
from the empty list and allocated to the particular queue. The
data which is being pushed onto the queue is then stored at the
newly allocated memory location. A pop operation returns the
data from the queue, and the common memory pool in which
the data is stored is then de-allocated from the queue and
re-allocated to the free list.

With dynamically allocated memory, individual queues are
formed by a linked list. For every queue entry, there is a
pointer to the next entry in the queue. Each queue typically
has a read and write pointer for the start and end of the linked
list. The locations in the common pool which are not allocated
to a particular queue are maintained as part of a separate
linked list, with its own write and read pointer, or a simple
head of stack pointer. Either way this is usually called the free
list. Another method is to use a separate dedicated first in first
out (FIFO) memory where the addresses of the un-allocated
common memory are stored within an array.

FIG. 1 depicts a classic singly linked list queue structure,
indicating a typical relationship between queue data 10,
queue entries 12 and pointers 14. As shown in FIG. 1, the
reference numeral 14 is used generically refer to a number of
different types of pointers, such as: a read pointer; pointer to
next; and write pointer.

FIGS. 2 and 3 depict physical and logical views, respec-
tively, of a typical dynamic queue system with a linked list
memory 16, a common memory pool 18 and the queue point-
ers: read 20, read next 22, and write 24, with queue pointers of
each type being provided for each queue. The linked list
memory 16 and common memory pool 18 are typically
implemented as a single port random access memory (RAM),
while the queue pointers 20, 22 and 24 are either register-
based or stored in a RAM. In this example, the linked list
memory 16 and common memory 18 each have eight memory

10

15

20

25

30

35

40

45

50

55

60

65

2

locations addressed: A0, Al to A7. Because every entry in the
common memory pool 18 must have a pointer to the next
entry, the linked list memory 16 and common memory 18 are
required to have equal number of locations.

When allocated to a particular queue, a common memory
pool location contains a queue entry. FIGS. 2 and 3 illustrate
two queues: Queue 126 and Queue 2 28. When un-allocated,
a common memory pool memory location is part of the free
list 32, shown in FIG. 3. In this example, the start address of
the free list is held in a stack pointer register 30 shown in FI1G.
2. The physical view of FIG. 2 shows the memory contents,
and the logical view of FIG. 3 displays the links from one
entry to the next with respect to Queue 1 26, Queue 2 28 and
Free List 32.

FIGS. 4 and 5 show physical and logical views, respec-
tively, of a push operation performed on the typical dynamic
queue system of FIG. 2. In such a system, the following
memory operations are needed for a queue push operation:

Step 34: A read of the queue read/write pointer memory 20,
22, 24 is needed to retrieve the read and write queue pointers
of the queue being operated on. This step is sometimes not
needed as the queue pointers can be stored in registers instead
of RAMs.

Step 36: Write the new queue entry 38 into the common
memory 18. The free list stack pointer value 30 is used as the
address to the common memory where the queue entry isto be
written. This is typically a 1 cycle write operation to the
common memory. As the stack pointer is stored in a register,
the address for common memory is immediately available.

Step 40: Update the free list 32 by removing the newly
allocated common memory. This is done by reading the
linked list memory to get the next item in the free list and
updating the free list stack pointer 30. This is typically a 1
cycle read operation of the linked list memory 16. The stack
free list stack pointer register is then updated on the next
cycle.

Step 42: Update the queue write pointer 24 with the current
contents of the vacant stack pointer register 30. This effec-
tively moves the write pointer to the latest entry in the queue.
This is typically a 1 cycle write operation to the queue read/
write pointer memory.

Step 44: Update the queue linked list 16 with the pointer to
new entry. This takes the last entry currently in the queue and
creates a link to the newly pushed data, effectively increasing
the linked list by one. This is typically a 1 cycle write opera-
tion to the linked list memory at the address pointed to by the
current write pointer.

FIGS. 6 and 7 show physical and logical views, respec-
tively, of a pop operation performed on the typical dynamic
queue system of FIG. 2. The following memory operations
are needed for a queue pop operation:

Step 46: A read of the queue read/write pointer memory 20,
22, 24 is needed to retrieve the read and write queue pointers
of'the queue being operated on. This is sometimes not needed
as the queue pointers can be stored in registers instead of
RAMs.

Step 48: Read the queue entry from the common memory
pool 18 using the queue read pointer 20 for queue 1 as the
address to the common memory. This is a 1 cycle read opera-
tion of the common memory.

Step 50: Update the read pointer 20 for queue 1. The next
read pointer value is written into the current read pointer
register. This is a 1 cycle write operation into the read pointer
register.

Step 52: Update the next read pointer 22 for queue 1. The
linked list memory 16 is read to retrieve address of the entry
following the next read pointer. The next read pointer value is

US 9,262,554 B1

3

used as the address to the linked list memory and the data
returned is written into the next read pointer register 22. This
is a 1 cycle write operation into the next read pointer register,
and a 1 cycle read operation of the linked list memory.

Step 54: Place the newly un-allocated memory at the top of
the free list stack 32. The stack pointer 30 is updated with the
current read pointer value. This is a 1 cycle write operation
into the free list stack pointer register.

Step 56: The linked list value of the newly un-allocated
memory is updated to point to the next entry in the free list.
The read pointer value is used as the address to the linked list
memory and the data written is the current value of free list
stack pointer.

It is important to note that dynamic queue system imple-
mentations are usually pipelined. Therefore, many of the
memory transactions previously described will occur concur-
rently. Because the memory transactions are pipelined, a push
or pop operation will always encounter latency in completing.
Regardless of latency, for maximum performance of a
dynamic queue system, the system must complete a push or
pop operation at every clock cycle.

Each push or pop queue operation requires one transaction
to the common memory pool and two transactions to the
linked list memory. Typical hardware implementations will
use a single port RAM or a bank of single port RAMs for the
common pool memory. The selection of RAM for the linked
list memory is more critical as the two memory transactions
are required. The least costly storage in terms of area utiliza-
tionisto usea single port RAM for the linked list memory, but
the performance impacts are such that the system would be
limited to one push or pop operation every two clock cycles.

Alternatively some systems utilize register based storage
for the linked list. This option is feasible for systems that
provide only a small amount of queue storage. For larger
dynamic queue systems, a register based approach does not
provide the density when compared to RAMs.

One more approach is for the linked list memory to use a
dual port RAM as these can perform both a read and write
within the same clock. This meets the performance goals.
However, again the hardware area of the linked list storage
can quickly approach the footprint of common pool memory,
making such a system very costly and effectively mitigating
some of the advantages of a dynamic queue system. In these
situations it can take more hardware resources to maintain the
linked list storage then the actual queue entries themselves.

For ASIC (Application Specific Integrated Circuit) based
implementation, queuing systems are required to be flexible
and high performance while minimizing hardware resources.
To maximize bandwidth, queues should be accessible for
push and pop operations at every clock cycle.

SUMMARY

It is an object of the present disclosure to obviate or miti-
gate at least one disadvantage of previous dynamic queue
systems and methods.

In an implementation, the present disclosure provides a
method of linked list management in a dynamic queue sys-
tem, including the following: dividing an uninitialized com-
mon memory pool into first and second sub-pools of equal
size; tracking unallocated memory locations in the first and
second sub-pools using first and second free lists, respec-
tively, the first and second free lists stored on separate single
port memories; and alternating queue entries over the first and
second sub-pools such that at most one memory transaction
occurs in each sub-pool free list when a queue operation is
performed.

20

30

40

45

50

55

4

In an embodiment, when the queue operation is performed,
a queue linked list update transaction occurs on a different
sub-pool than a free list update transaction. The method can
further include initializing the first and second free lists such
that each of the memory locations within a sub-pool is part of
a respective free list.

The method can further include storing, for each queue, an
associated sub-pool queue index, which determines the sub-
pool to be used for allocating memory when performing a
queue operation. The method can also further include storing
the first and second free lists on first and second single port
linked list memories, respectively, and storing queue linked
lists such that the queue linked lists span both the first and
second single port linked list memories.

In an implementation, the present disclosure provides a
dynamic queue system, comprising a common memory pool,
first and second sub-pool free lists, and a queue manager. The
common memory pool comprises a first sub-pool and a sec-
ond sub-pool, the first and second sub-pools being of equal
size. The first sub-pool free list is provided in a first single port
linked list memory and arranged to track each un-allocated
memory location in the first sub-pool. The second sub-pool
free list is provided in a second single port linked list memory
and arranged to track each un-allocated memory location in
the second sub-pool. The queue manager is arranged to allo-
cate memory for queue entries in an alternating manner
between the first sub-pool and the second sub-pool such that
per-cycle queue operations are achieved using the single port
linked list memories for storage of linked list data.

In an embodiment, the queue manager allocates memory
for queue entries such that at most one memory transaction
occurs in each sub-pool free list when a queue operation is
performed. In an embodiment, the queue manager allocates
memory for queue entries such that a queue linked list update
transaction occurs on a different sub-pool than a free list
update transaction.

In an embodiment, the system further comprises a queue
sub-pool index associated with each queue, which determines
the sub-pool to be used for allocating memory when perform-
ing a queue operation.

The first and second single port linked list memories can
comprise a single port random access memory (RAM). The
first and second sub-pool free lists can be maintained as a
stack, or as a FIFO based linked list.

In another implementation, the present disclosure provides
a method of linked list management in a dynamic queue
system, including the following: dividing an uninitialized
common pool of memory into a plurality of sub-pools of
equal size; tracking unallocated memory locations in the plu-
rality of sub-pools using a plurality of free lists each uniquely
matched with one of the plurality of sub-pools, each of the
plurality of free lists stored on separate single port memories;
and alternating queue entries over the plurality of sub-pools
such that at most one memory transaction occurs in each
sub-pool free list when a queue operation is performed.

In an embodiment, when the queue operation is performed,
a queue linked list update transaction occurs on a different
sub-pool than a free list update transaction. In an embodi-
ment, alternating the queue entries comprises evenly distrib-
uting the queue entries over the plurality of sub-pools one at
atime, starting with a first sub-pool, until the number of queue
entries equals the number of sub-pools. After the number of
queue entries equals the number of sub-pools, the next entry
can be assigned to the first sub-pool, and the pattern repeated.

In a further implementation, the present disclosure pro-
vides a dynamic queue system including a common memory
pool, a plurality of sub-pool free lists, and a queue manager.

US 9,262,554 B1

5

The common memory pool comprises a plurality of sub-
pools, each of the plurality of sub-pools being of equal size.
Each of the plurality of sub-pool free lists is provided in a
separate single port linked list memory. Each of the plurality
of sub-pool free lists are uniquely associated with one of the
plurality of sub-pools and arranged to track each un-allocated
memory location in the uniquely associated sub-pool. The
queue manager is arranged to allocate memory for queue
entries in an alternating manner over the plurality of sub-
pools such that per-cycle queue operations are achieved using
the single port linked list memories for storage of linked list
data.

In an embodiment, the queue manager allocates memory
for queue entries such that at most one memory transaction
occurs in each sub-pool free list when a queue operation is
performed. In an embodiment, the queue manager allocates
memory for queue entries such that a queue linked list update
transaction occurs on a different sub-pool than a free list
update transaction. The queue manager can evenly distribute
the queue entries over the plurality of sub-pools one at a time,
starting with a first sub-pool, until the number of queue
entries equals the number of sub-pools.

In a further implementation, the present disclosure pro-
vides an integrated circuit including a dynamic queue system
as described and illustrated herein.

Other aspects and features will become apparent to those
ordinarily skilled in the art upon review of the following
description of specific embodiments in conjunction with the
accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will now be described, by way of example
only, with reference to the attached Figures, wherein:

FIG.11llustrates a classic singly linked list queue structure.

FIG. 2 illustrates a physical view of a typical dynamic
queue system with a linked list memory, a common memory
pool and the queue pointers: read, write and read next.

FIG. 3 illustrates a logical view of the system of FIG. 2.

FIG. 4 illustrates a push operation performed on the system
of FIG. 2.

FIG. 5 illustrates a logical view of the push operation
shown in FIG. 4.

FIG. 6 illustrates a pop operation performed on the system
of FIG. 2.

FIG. 7 illustrates a logical view of the pop operation shown
in FIG. 6.

FIG. 8 illustrates a method of linked list management in a
dynamic queue system according to an embodiment of the
present disclosure.

FIG. 9 illustrates a physical view of the state of an initial-
ized dynamic queue system with two queues according to an
embodiment of the present disclosure.

FIG. 10 illustrates a logical view of the embodiment shown
in FIG. 9.

FIG. 11 depicts a first push operation on queue 1 according
to an embodiment of the present disclosure.

FIG. 12 illustrates a logical view of the embodiment shown
in FIG. 11.

FIG. 13 depicts a second push operation on queue 1 accord-
ing to an embodiment of the present disclosure.

FIG. 14 illustrates a logical view of the embodiment shown
in FIG. 13.

FIG. 15 depicts a pop operation on queue 1 according to an
embodiment of the present disclosure.

FIG. 16 illustrates a logical view of the embodiment shown
in FIG. 15.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 17 illustrates an embodiment according to the present
disclosure of the method and apparatus for linked list man-
agement within a dynamic queue system.

DETAILED DESCRIPTION

Generally, embodiments of the present disclosure provide
a method and system for management of linked lists within a
dynamic queue system. In a dynamic queue system where a
central memory is shared amongst a set of queues, the method
organizes the linked list structures of the queues. The linked
list pointers of the queues are organized over a set of single
port memories. Memory for the queue entries is allocated in
an alternating fashion, which allows the method to provide
per-cycle access to queues while reducing the footprint of the
memory elements used for maintaining the linked list struc-
tures. The method disclosed in an embodiment reduces the
overall memory requirements for the design and implemen-
tation of queue systems with multiple queues sharing a com-
mon pool of memory.

One known method to dynamically allocate memory for a
queuing system is described in U.S. Pat. No. 6,694,388
Schzukin et al. “Dynamic queue system incorporating mul-
tiple queues sharing a single memory”. This patent discloses
a system whereby linked list structures are used to track free
locations within the common pool of memory which are
un-allocated and also to track locations within the common
pool which are currently occupied and make up the queue
data. The 388 patent does not disclose a method to organize
the storage of the queue linked list and free linked list; it
simply describes the basics of a dynamic queue system.

A hardware implementation of a dynamic queue system is
described in U.S. Pat. No. 7,035,988 Marino et al. entitled
“Hardware implementation of an N-way dynamic linked
list”. This patent discloses a hardware implementation
whereby locations occupied by queue data are maintain via
linked-list and free locations are held in a dedicated FIFO. A
buffer RAM is used as the common pool of memory for
storing queue data. A next pointer RAM is used to track the
next item in queue linked list. A free pointer RAM is used to
create a FIFO, storing the locations in the common pool
which are unoccupied by queue data. A bank of registers is
used to store head and tail pointers for each of the queue
linked list. The *988 patent uses a RAM for pointer storage
and another RAM of the same size for tracking the available
free memory. The method of the *988 patent describes a way
organize the storage or the queue linked list and free pointers,
but it does not disclose a method to reduce the storage
memory requirements for maintenance of these lists.

A method to reduce the processing time for free memory
allocation in a linked list memory is described in U.S. Pat. No.
7,111,289 “Method for implementing dual linked list struc-
tures to enable fast linked list pointer updates”. This patent
discloses a linked list structure which maintains a head, tail
and head +1 pointer structure. This structure is used to facili-
tate fewer cycles when allocating memory. A dual free list
structure is also described, this allows for memory to be
allocated from one list while de-allocated from another. The
method described in the 289 patent does not address the
organization of a linked list structure over a plurality of single
port memories.

Some of the known approaches are represented by the
following public domain publications, which are each incor-
porated by reference in their entirety: U.S. Pat. No. 6,049,
802, Waggener et al., 2000, “System and Method for gener-
ating a linked list in a computer memory”; U.S. Pat. No.
6,430,666, Roth et al., 2002, “Linked List Memory and

US 9,262,554 B1

7

method therefor”; U.S. Pat. No. 6,694,388, Schzukin et al.,
2004, “Dynamic queue system incorporating multiple queues
sharing a single memory”; U.S. Pat. No. 7,111,289, Koob et
al., 2006, “Method for implementing dual linked list struc-
tures to enable fast linked list pointer updates™; U.S. Pat. No.
7,035,988, Marino et al., 2006, “HW implementation of an
N-way dynamic linked list.”; US 2005/0235129: “Switch
memory management using a linked list.”; U.S. Pat. No.
7,334,091: “Queue Memory Management”; U.S. Pat. No.
6,640,267 “Architecture for Multi-Queue Storage Element”;
U.S. Pat. No. 6,219,728: “Method and Apparatus for Allocat-
ing Shared memory resources among a plurality” of queues
each having a threshold value™; U.S. Pat. No. 5,809,557:
“Memory array comprised of multiple FIFO devices.”

When selecting a storage medium for a dynamic queue
system, such as in the case of an application-specific inte-
grated circuit (ASIC)-based implementation, RAM based
storage is preferred over register based storage as it is com-
paratively highly dense. Ideally all storage needs for a
dynamic queue system are provided using RAMs versus reg-
isters, this includes link-list pointers, queue head and tail
pointers, and any other pointers used for maintaining the
locations of the unallocated memory.

A single port RAM can perform a read or a write at every
clock cycle. A dual port RAM provides one read and one write
every clock cycle. During pop operation the linked list
memory which maintains the queue linked list and free link
list must read and write for each operation. Normally, this
would necessitate the use of a dual port RAM, but this is
typically 2x the footprint of a single port RAM. By allocating
the memory in an alternating fashion over the 2 pools accord-
ing to embodiments of the present disclosure, a push or pop
operation performs a read of one pool and a write of another
pool, which permits the use of single port memories since the
entries have been organized such that a pool does not require
a read and write at same time.

FIG. 8 illustrates a method of linked list management in a
dynamic queue system according to an embodiment of the
present disclosure. The method 100 includes the following
steps. In step 102, an uninitialized common pool of memory
is divided into first and second sub-pools of equal size. In step
104, unallocated memory locations in the first and second
sub-pools are tracked using first and second free lists, respec-
tively. The first and second free lists are stored on separate
single port memories. In step 106, queue entries are alternated
over the first and second sub-pools such that at most one
memory transaction occurs in each sub-pool free list when a
queue operation is performed, such as a queue push ora queue
pop operation. In an example embodiment, in step 108, a
queue linked list update transaction occurs on a different
sub-pool than a free list update transaction.

A method of linked list management according to an
embodiment of the present disclosure begins with an un-
initialized memory space whereby the common memory pool
is un-allocated neither to the free list nor to any of the linked
lists that form a queue. The total available common memory
pool is logically divided in step 102 into two separate but
equal sub-pools. This division is a logical division and imple-
mentation does not require a physical memory for each sub-
pool within the common memory. The un-allocated space for
each sub-pool is tracked using a linked list called the free list.

The method and apparatus according to embodiments
described herein use a novel approach to organize the linked
lists by alternating the queue entries over first and second
sub-pools of the common memory pool, also referred to as the
lower and upper regions of the common memory pool. This
allows hardware based implementation to use a set of single

10

15

20

25

30

35

40

45

50

55

60

65

8

port memories, such as single port RAMs, for storage of the
linked lists. As shown in the figures, it is worth noting that
while two single port memories are being used, each of the
two single port memories is half the depth of the common
memory pool. Additionally, in an embodiment the method
utilizes the same linked list memory for maintaining the free
linked list and the queue linked lists. This method maximizes
throughput while using fewer memory resources over exist-
ing solutions.

Embodiments of the present disclosure provide a method
to organize and allocate memory within a dynamic queue
system, such that per-cycle queue push/pop operations are
achieved using single port RAMs for storage of linked list
data. In an embodiment, the common pool of memory is
divided into 2 or more sub-pools of equal parts and each
un-allocated memory location is tracked via a per sub-pool
free list. The sub-pools can all be contained within the one
physical memory or multiple physical memories. Each of the
sub-pool free lists is maintained as a stack or alternatively a
FIFO based linked list.

Entries within a queue are organized such that they are
allocated in an alternating fashion through each of the sub-
pools. For example, in an embodiment, the first to be pushed
onto the queue is allocated from the first sub-pool, while the
second entry is allocated from the second sub-pool. This is
repeated until the number of queue entries equals the number
of sub-pools, after which the next entry will go into the first
sub-pool and the pattern is repeated. The method keeps track
of' which sub-pool is currently scheduled for memory alloca-
tion; this is maintained on a per queue basis.

A queue operation, such as a queue push or queue pop
operation requires two memory transactions to the linked list
memory: one transaction to update the queue linked list and
another to update the free list. By alternating the queue entries
over the sub-pools, the method ensures that each of the two
linked list memory transactions occurs on unique a sub-pool.
By having at most one memory transaction for each sub-pool
linked list, hardware implementation of dynamic queue sys-
tem can use single port memories for each sub-pool and
provide per-cycle access for queue operations.

‘When more than two sub-pools are involved, the method of
FIG. 8 can be described more generally as a method of linked
list management in a dynamic queue system, including the
following steps: dividing an uninitialized common pool of
memory into a plurality of sub-pools of equal size; tracking
unallocated memory locations in each of the plurality of
sub-pools using a plurality of free lists each uniquely matched
with one of the plurality of sub-pools, each of the plurality of
free lists stored on separate single port memories; and alter-
nating queue entries over the plurality of sub-pools such that
at most one memory transaction occurs in each sub-pool free
list when a queue operation is performed. In an embodiment,
when the queue operation is performed, a queue linked list
update transaction occurs on a different sub-pool than a free
list update transaction. In an embodiment, alternating the
queue entries comprises evenly distributing the queue entries
over the plurality of sub-pools one at a time, starting with a
first sub-pool, until the number of queue entries equals the
number of sub-pools, after which the next entry is assigned to
the first sub-pool and the pattern is repeated.

FIGS. 9to0 16 illustrate exemplary systems and methods for
performing push and pop operations according to embodi-
ments of the present disclosure. These figures do not explic-
itly include the first step of reading the queue read/write
pointers, as this step is not needed when the queue pointers are
maintained in registers.

US 9,262,554 B1

9

FIGS. 9 and 10 show physical and logical views, respec-
tively, of the state of an initialized dynamic queue system 110
with two queues according to an embodiment of the present
disclosure. In the physical view of the system 110 in FIG. 9,
alinked list memory 112 is a logical reference to two separate
single port memories, referred to respectively as a first single
port linked list memory 114 and a second single port linked
list memory 116, each of which can be implemented as a
single port RAM. The common memory pool 118 is a single
contiguous memory, implemented in an embodiment in a
single port RAM, logically divided into two sub-pools 120
and 122, with each having 4 entries in this embodiment.
These entries are part of free list A 124 and free list B 126
shown in FIG. 10. For each sub-pool, the address of the first
entry in the free list is stored as a pointer in register. These
registers are referred to as the free list stack pointer registers
128 and 130 in FIG. 9.

Each of the free lists 124 and 126 is initialized such that
each of the memory locations within a sub-pool is part of a
respective free list. The linked list memory 112 is used to store
the address to next entry in the free list. In an embodiment,
one single port linked list memory is used for each sub-pool.
Upon initialization, none of the queue read pointers 132, next
read pointers 134, or write pointers 136 are valid. Each queue
has an associated sub-pool queue index, shown in FIG. 9 as
138 and 140 for queues 1 and 2, respectively. This index
determines the sub-pool that should be used for allocating
memory when performing a queue operation, such as a queue
pop or aqueue push operation. In an embodiment, the first and
second free lists are stored on first and second single port
linked list memories, respectively, and queue linked lists are
stored such that the queue linked lists span both the first and
second single port linked list memories.

Initially, all sub-pool queue indexes are equal to one
another. In this example, on initialization each sub-pool index
132 and 134 is set to A, meaning that the first forthcoming pop
operations will affect sub-pool A free list 124. The NULL
values for pointers 132, 134, and 136 are implied by tracking
the length of the linked list; the system does not record a
NULL value within the linked list memory 112. Similarly, the
read and write queue pointers have an implied NULL value
when a particular queue contains 0 entries. A separate register
is used to track and record the length of each queue linked list
and free list.

In an embodiment, the implementation shown in FIGS. 9
and 10 can be described as a dynamic queue system, com-
prising a common memory pool, first and second sub-pool
free lists, and a queue manager. The common memory pool
comprises a first sub-pool and a second sub-pool, the first and
second sub-pools being of equal size. The first sub-pool free
list is provided in a first single port linked list memory and
arranged to track each un-allocated memory location in the
first sub-pool. The second sub-pool free list is provided in a
second single port linked list memory and arranged to track
each un-allocated memory location in the second sub-pool.
The queue manager is arranged to allocate memory for queue
entries in an alternating manner between the first sub-pool
and the second sub-pool such that per-cycle queue operations
are achieved using the single port linked list memories for
storage of linked list data.

FIGS. 11 and 12 show physical and logical views, respec-
tively, of a first push operation on queue 1 142 using a method
according to an embodiment of the present disclosure, in
which the following actions are illustrated.

Step 200: Write the new queue entry 144 into the common
memory pool 118. The queue 1 sub-pool index 138 indicates
that the free list A 124 in FIG. 12 is to be used. Therefore the

10

15

20

25

30

35

40

45

50

55

60

10

value A0 of the free list stack pointer A 128 is used as the
address to the common memory pool 118 where the queue
entry is to be written. The write operation is represented in
FIG. 11 as the change in value of memory location A0 in
sub-pool 120 from FREE A to Queue 1 Entry 1, which in
practical implementation would be replaced by an associated
value. This is a 1 cycle write operation to the common
memory pool. As the stack pointer is stored in a register, the
address for common memory is immediately available.

Step 202: Update the free list A 124 in FIG. 12 by removing
the newly allocated common memory. This is done by reading
the linked list memory 114 associated with sub-pool A 120 to
obtain the next item A1 in the free list A 124 and updating the
free list stack pointer A 128. This is a 1 cycle read operation
of the linked list memory 114, and is also referred to as a
linked list update transaction. The stack free list stack pointer
A register 128 is then updated on the next cycle.

Step 204: Update the queue write pointer 136 and the queue
read pointer 132 for queue 1 with the current contents A0 of
the vacant stack pointer A register 128. This is typically a 1
cycle write operation to the queue read/write pointer memory.

Step 206: The sub-pool index 138 for queue 1 is updated to
the next sub-pool index B, alternating from the previous value
of A. In the case of more than two sub-pools, alternating
would comprise assigning the next sub-pool identifier in the
list of available sub-pool identifiers.

It is worth noting that certain steps of the overall push
operation method are not needed in the embodiment shown in
FIGS. 11 and 12, as this is a push of the first entry in the
targeted queue. Because it is the first entry, there is no need to
update the queue linked list.

FIGS. 13 and 14 show physical and logical views, respec-
tively, of a second push operation on queue 1 using a method
according to an embodiment of the present disclosure, in
which the following actions are illustrated.

Step 210: Write the new queue entry 146 into the common
memory pool 118. The queue 1 sub-pool index 138 indicates
that the free list B 126 in FIG. 14 is to be used. Therefore the
value A4 of the free list stack pointer B 130 is used as the
address to the common memory pool 118 where the queue
entry is to be written. This is a 1 cycle write operation to the
common memory pool 118. As the stack pointer is stored in a
register, the address for common memory is immediately
available.

Step 212: Update the queue linked list with the pointer to
new entry, updating the Free List Stack Pointer B 128. This
takes the last entry currently in the queue and creates a link to
the newly pushed data, effectively increasing the linked list by
one. Thisis a 1 cycle write operation to the linked list memory
at the address pointed to by the current write pointer, and is
referred to as a queue linked list update transaction.

Step 214: Update the queue write pointer 136 for queue 1
with the current contents A4 of the vacant stack pointer B
register 130. This effectively moves the write pointer 136 to
the latest entry in the queue. This is a 1 cycle write operation
to the queue read/write pointer memory.

Step 216: The sub-pool index 138 for queue 1 is updated to
the next sub-pool index A.

Step 218: Update the free list B 126 in FIG. 14 by removing
the newly allocated common memory. This is done by reading
the linked list memory 116 associated with sub-pool B 122 to
obtain the next item A5 in the free list B 126 and updating the
free list stack pointer B 130. This is a 1 cycle read operation
of the linked list memory 116, referred to as a linked list
update transaction. The stack free list stack pointer B register
130 is then updated on the next cycle.

US 9,262,554 B1

11

It is worth noting that the read and write transactions on the
linked list memory 112 are on different sub-pools of the
linked list. This is a result of alternating queue entries over the
sub-pools according to embodiments of the present disclo-
sure. This ensures that the implementation can use single port
memories 114 and 116 for each sub-pool of the linked list
memory, providing performance and lower memory area for
linked lists compared to known approaches which use a single
port memory for the linked lists. Using single port memories
for the linked list memory, a queue operation can be per-
formed every clock cycle according to embodiments of the
present disclosure, compared to one every two clock cycles
with known approaches.

FIGS. 15 and 16 show physical and logical views, respec-
tively, of a pop operation on queue 1 using a method accord-
ing to an embodiment of the present disclosure, in which the
following actions are illustrated.

Step 220: Read the queue entry 148, with a value of Queue
1 Entry 1, from the common memory pool 118 using the value
A0 of the queue read pointer 132 for queue 1 as the address to
the common memory pool 118. This is a 1 cycle read opera-
tion of the common memory pool 118.

Step 222: Update the read pointer 132 for queue 1. The
value A4 of the next read pointer 134 is written into the
current read pointer register 132. This is a 1 cycle write
operation into the read pointer register.

Step 224: Update the next read pointer 134. The address A4
of the linked list memory 116 is read to retrieve the address
NULL of the entry following the next read pointer. The next
read pointer value is used as the address to the linked list
memory 112 and the data returned is written into the next read
pointer register 134. This is a 1 cycle write operation into the
next read pointer register, and a 1 cycle read operation of the
linked list memory, or linked list update transaction.

Step 226: Place the newly un-allocated memory A0 at the
top of the free list stack pointer A 128. The selection of the
free list is based on the common pool address which is being
de-allocated. This address effectively identifies the sub-pool.
The free list stack pointer 128 is updated with the current read
pointer value. This is a 1 cycle write operation into the free list
stack pointer register.

Step 228: The linked list value of the newly un-allocated
memory is updated to point to the next entry in the free list A
120. The read pointer value Al is used as the address to the
linked list memory 114 and the data written is the current
value of free list stack pointer.

FIG. 17 illustrates an embodiment according to the present
disclosure of an apparatus for linked list management with a
dynamic queue system. FIG. 17 illustrates an integrated cir-
cuit 150, which in an exemplary embodiment is an ASIC,
comprising the previously described dynamic queue system
110 and a queue manager 152. The queue manager 152 is
arranged to manage or perform the steps 200 to 228 shown in
FIGS. 11, 13 and 15 and described above. In an embodiment,
the queue manager 152 is provided as a processor or as a
controller, which can be dedicated or part of a more general
purpose processor or controller.

In applications such as RAID (Redundant Array of Inex-
pensive Disks) controllers, a Host computer 152 is connected
to a RAID ASIC via a PCle (Peripheral Component Intercon-
nect Express) protocol bus and using a PCle interface 154.
The Host 152 and RAID controller communicate to each
other by using a set of queues 156 and 158 on the RAID
controller. The queues in the controller are classified as
inbound 156, from Host and outbound 158, from RAID con-
troller. The Host writes commands for the RAID controller
into the inbound queue 156. The inbound queue 156 is read by

10

15

20

25

30

35

40

45

50

55

60

65

12

the embedded processor 160 and commands are processed.
After completing the Host command, the embedded proces-
sor 160 will signal the Host that the command is complete by
writing into the outbound queue 158. A write to the outbound
queue will also generate an interrupt to the Host.

With the advent of the PCle SR-IOV (single root input/
output virtualization) standard, RAID controllers are begin-
ning to support virtualization. Virtualization causes the RAID
controller to present multiple virtual functions to the Host and
consequently multiple inbound and outbound queues. Since
the memory space within the ASIC is limited, it is best to keep
the memory of the inbound and outbound queues flexible
such that they can be use for any function. In this environ-
ment, a method according to an embodiment of the present
disclosure is used to provide per-cycle access to queues for
push and pop operations and reduce the area of the linked list
memory.

When the common memory pool is divided into more than
two sub-pools, in an embodiment the present disclosure pro-
vides a dynamic queue system including a common memory
pool, a plurality of sub-pool free lists, and a queue manager.
The common memory pool comprises a plurality of sub-
pools, each of the plurality of sub-pools being of equal size.
Each of the plurality of sub-pool free lists is provided in a
separate single port linked list memory. Each of the plurality
of sub-pool free lists are uniquely associated with one of the
plurality of sub-pools and arranged to track each un-allocated
memory location in the uniquely associated sub-pool. The
queue manager is arranged to allocate memory for queue
entries in an alternating manner over the plurality of sub-
pools such that per-cycle queue operations are achieved using
the single port linked list memories for storage of linked list
data.

Embodiments described herein are applicable to any queu-
ing system, hardware or software based, which uses linked
lists to form queues and manage memory. The queues can be
FIFO (first-in-first-out), LIFO (last-in-first-out) or combina-
tions thereof. The method can be used to provide per-cycle
access within these systems, or to improve the performance of
more complex queuing systems in which per-cycle access is
not possible.

By using the method of embodiments described herein,
hardware implementations of a dynamic queue system realize
a substantial decrease in the memory footprint without com-
promising on performance. The method of embodiments
described herein is particularly useful in FPGA (Field Pro-
grammable Gate Array) based implementations as memory
resources are limited. Reducing the amount of area for
embedded memories also has an economic impact in the
development of ASICs, as it directly effects the cost of manu-
facturing, packaging, test and production. Because queuing is
a fundamental data structure for computing, the method of
embodiments described herein and its implementation are
applicable to a wide range of products. Specifically the use of
dynamic queuing is prevalent in a variety of products within
the storage and communications domain, such products
include an SOC (System on a Chip) for RAID.

In the preceding description, for purposes of explanation,
numerous details are set forth in order to provide a thorough
understanding of the embodiments. However, it will be appar-
ent to one skilled in the art that these specific details are not
required in order to practice the embodiments. In other
instances, well-known electrical structures and circuits are
shown in block diagram form in order not to obscure the
embodiments. For example, specific details are not provided

US 9,262,554 B1

13

as to whether the embodiments described herein are imple-
mented as a software routine, hardware circuit, firmware, or a
combination thereof.

Embodiments can be represented as a software product
stored in a machine-readable medium (also referred to as a
computer-readable medium, a processor-readable medium,
or a computer usable medium having a computer-readable
program code embodied therein). The machine-readable
medium can be any suitable tangible medium, including mag-
netic, optical, or electrical storage medium including a dis-
kette, compact disk read only memory (CD-ROM), memory
device (volatile or non-volatile), or similar storage mecha-
nism. The machine-readable medium can contain various sets
ofinstructions, code sequences, configuration information, or
other data, which, when executed, cause a processor to per-
form steps ina method according to an embodiment. Those of
ordinary skill in the art will appreciate that other instructions
and operations necessary to implement the described embodi-
ments can also be stored on the machine-readable medium.
Software running from the machine-readable medium can
interface with circuitry to perform the described tasks.

The above-described embodiments are intended to be
examples only. Alterations, modifications and variations can
be effected to the particular embodiments by those of skill in
the art without departing from the scope of the embodiments
and the disclosure, which is defined solely by the claims
appended hereto.

What is claimed is:

1. A method of linked list management in a dynamic queue
system, comprising:

logically dividing an uninitialized common memory pool

into first and second sub-pools of equal size, each sub-
pool configured to store a queue entry and perform a
queue operation on the queue entry;

tracking unallocated memory locations in the first and sec-

ond sub-pools using first and second free lists, respec-
tively, the first and second free lists stored on separate
first and second single port memories; and

alternating storing the queue entries in the first and second

sub-pools, such that performing a queue operation on the
queue entry in either the first or second sub-pool com-
prises accessing the first free list and the second free list
in one clock cycle by performing, in the one clock cycle,
both a first memory transaction at the first single port
memory and a second memory transaction at the second
single port memory, wherein each of the queue opera-
tion, the first memory transaction, and the second
memory transaction comprises a read or a write opera-
tion.

2. The method of claim 1 wherein, when the queue opera-
tion is performed, a queue linked list update transaction
occurs on a different sub-pool than a free list update transac-
tion.

3. The method of claim 1 further comprising: initializing
the first and second free lists such that each of the memory
locations within a sub-pool is part of a respective free list.

4. The method of claim 1 further comprising storing, for
each queue, an associated sub-pool queue index, which deter-
mines the sub-pool to be used for allocating memory when
performing a queue operation.

5. The method of claim 1 further comprising storing the
first and second free lists on first and second single port linked
list memories, respectively, and storing queue linked lists
such that the queue linked lists span both the first and second
single port linked list memories.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method of claim 1 further comprising:

tracking allocated memory locations occupied by queue
entries in the first and second sub-pools by using queue
linked lists, the queue linked lists being stored on the
same single port memories as the first and second free
lists.

7. A dynamic queue system, comprising:

an uninitialized common memory pool circuit comprising
a first sub-pool and a second sub-pool, the first and
second sub-pools being of equal size and being logical
divisions of the common memory pool and each sub-
pool configured to store a queue entry and perform a
queue operation on the queue entry;

a first sub-pool free list provided in a first single port linked
list memory and arranged to track each un-allocated
memory location in the first sub-pool;

a second sub-pool free list provided in a second single port
linked list memory and arranged to track each un-allo-
cated memory location in the second sub-pool; and

a queue manager arranged to allocate memory for queue
entries in an alternating manner between the first sub-
pool and the second sub-pool such that performing a
queue operation on the queue entry in either the first or
second sub-pool comprises accessing the first free list
and the second free list in one clock cycle by performing,
in the one clock cycle, both a first memory transaction at
the first single port linked list memory and a second
memory transaction at the second single port linked list
memory, wherein each of the queue operation, the first
memory transaction, and the second memory transac-
tion comprises a read or a write operation.

8. The system of claim 7 wherein the queue manager allo-
cates memory for queue entries such that at most one memory
transaction occurs in each sub-pool free list when a queue
operation is performed.

9. The system of claim 7 wherein the queue manager allo-
cates memory for queue entries such that a queue linked list
update transaction occurs on a different sub-pool than a free
list update transaction.

10. The system of claim 7 further comprising a queue
sub-pool index associated with each queue, which determines
the sub-pool to be used for allocating memory when perform-
ing a queue operation.

11. The system of claim 7 wherein the first and second
single port linked list memories each comprise a single port
random access memory (RAM).

12. The system of claim 7 wherein the first and second
sub-pool free lists are maintained as a stack.

13. The system of claim 7 wherein the first and second
sub-pool free lists are maintained as a first in first out (FIFO)
based linked list.

14. The system of claim 7 further comprising:

first and second queue linked lists provided on the same
single port memories as the first and second free lists,
respectively, and arranged to track allocated memory
locations occupied by queue entries in the first and sec-
ond sub-pools, respectively.

15. A method of linked list management in a dynamic

queue system, comprising:

logically dividing an uninitialized common pool of
memory into a plurality of sub-pools of equal size, each
sub-pool configured to store a queue entry and perform
a queue operation on the queue entry;

tracking unallocated memory locations in the plurality of
sub-pools using a plurality of free lists each uniquely
matched with one of the plurality of sub-pools, each of
the plurality of free lists stored on separate single port
memories;

US 9,262,554 B1

15

alternating storing the queue entries in the plurality of
sub-pools such that performing a queue operation on the
queue entry in any of the sub-pools comprises accessing
two of the free lists in one clock cycle by performing, in
the one clock cycle, both a first memory transaction at a
first single port memory and a second memory transac-
tion at a second single port memory, wherein each of the
queue operation, the first memory transaction, and the
second memory transaction comprises a read or a write
operation.

16. The method of claim 15 wherein, when the queue
operation is performed, a queue linked list update transaction
occurs on a different sub-pool than a free list update transac-
tion.

17. The method of claim 15 wherein alternating the queue
entries comprises evenly distributing the queue entries over
the plurality of sub-pools one at a time, starting with a first
sub-pool, until a number of queue entries equals a number of
sub-pools.

18. The method of claim 17 further comprising, after the
number of queue entries equals the number of sub-pools,
assigning the next entry to the first sub-pool and repeating the
pattern.

19. The method of claim 15 further comprising:

tracking allocated memory locations occupied by queue

entries in the plurality of sub-pools by using queue
linked lists, the queue linked lists being stored on the
same single port memories as the plurality of free lists.

20. A dynamic queue system, comprising:

an uninitialized common memory pool circuit comprising

a plurality of sub-pools, each of the plurality of sub-
pools being of equal size and being logical divisions of
the common memory pool and each sub-pool configured
to store a queue entry and perform a queue operation on
the queue entry;

10

15

20

25

30

16

a plurality of sub-pool free lists each provided in a separate
single port linked list memory, each of the plurality of
sub-pool free lists being uniquely associated with one of
the plurality of sub-pools and arranged to track each
un-allocated memory location in the uniquely associ-
ated sub-pool;

a queue manager arranged to allocate memory for queue
entries in an alternating manner over the plurality of
sub-pools such that performing a queue operation on the
queue entry in any of the sub-pools comprises accessing
two of the free lists in one clock cycle by performing, in
the one clock cycle, both a first memory transaction at a
first single port linked list memory and a second memory
transaction at a second single port linked list memory,
wherein each of the queue operation, the first memory
transaction, and the second memory transaction com-
prises a read or a write operation.

21. The system of claim 20 wherein the queue manager
allocates memory for queue entries such that at most one
memory transaction occurs in each sub-pool free list when a
queue operation is performed.

22. The system of claim 20 wherein the queue manager
allocates memory for queue entries such that a queue linked
list update transaction occurs on a different sub-pool than a
free list update transaction.

23. The system of claim 20 wherein the queue manager
evenly distributes the queue entries over the plurality of sub-
pools one at a time, starting with a first sub-pool, until the
number of queue entries equals the number of sub-pools.

24. The system of claim 20 further comprising:

aplurality of queue linked lists provided on the same single
port memories as the plurality of free lists and arranged
to track allocated memory locations occupied by queue
entries in the plurality of sub-pools.

#* #* #* #* #*

